Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cetyltrimethylammonium bromide (CTAB) has been used to enhance the selectivity of CO2 electrochemical reduction. Traditionally, this selectivity was attributed to repulsion of water molecules due to a CTAB self-assembled monolayer, which forms under negative potential and disassembles at positive voltage due to electrostatic repulsions. In this report, using in operando interface sensitivity sum frequency generation spectroscopy, we investigated the self-assembly behavior of CTAB across a broad electrochemical potential range. We observed that CTAB molecules form a stable monolayer at the Stern layer over the entire potential scan, even when the electrodes are positively charged. Rather than disassembling, the CTAB molecules reorient themselves to balance the electrostatic interactions and the non-covalent hydrophobic effects, the latter being the primary driving force maintaining the monolayer at a positive potential. This finding contrasts the traditional view that CTAB monolayers are absent when the electrodes are positively charged, indicating a stable and ordered monolayer with respect to the electrostatic repulsions at liquid/electrode interfaces. The balance between non-covalent and electrostatic interactions offers a facile and reversible electrochemical method to control the local environment and dominating interactions at the Stern layer of the electrode surface, thus providing a means for engineering a micro-electrochemical environment.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Hybrid electrodes with improved O2tolerance and capability of CO2conversion into liquid products in the presence of O2are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2molecule and the basic amino group of aniline renders enhanced CO2separation from O2. Loaded with a cobalt phthalocyanine‐based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2in the CO2feed gas. The electrode can still produce CO at an O2/CO2ratio as high as 9:1. Switching to a Sn‐based catalyst, for the first time O2‐tolerant CO2electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm−2in the presence of 5 % O2.more » « less
An official website of the United States government
